Big islands in dispersing billiard-like potentials
نویسندگان
چکیده
We derive a rigorous estimate of the size of islands (in both phase space and parameter space) appearing in smooth Hamiltonian approximations of scattering billiards. The derivation includes the construction of a local return map near singular periodic orbits for an arbitrary scattering billiard and for the general smooth billiard potentials. Thus, universality classes for the local behavior are found. Moreover, for all scattering geometries and for many types of natural potentials which limit to the billiard flow as a parameter → 0, islands of polynomial size in appear. This suggests that the loss of ergodicity via the introduction of the physically relevant effect of smoothening of the potential in modeling, for example, scattering molecules, may be of physically noticeable effect. ©1999 Elsevier Science B.V. All rights reserved. MSC: 58F15; 82C05; 34C37; 58F05; 58F13; 58F14
منابع مشابه
Nonergodicity of the motion in three-dimensional steep repelling dispersing potentials.
It is demonstrated numerically that smooth three degrees of freedom Hamiltonian systems that are arbitrarily close to three-dimensional strictly dispersing billiards (Sinai billiards) have islands of effective stability, and hence are nonergodic. The mechanism for creating the islands is corners of the billiards domain.
متن کاملDecay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows
Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster ...
متن کامل0 M ay 2 00 8 Decay of correlations and invariance principles for dispersing billiards with cusps , and related planar billiard flows
Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster ...
متن کاملLimited to Ergodic Bil l iards
Abs t rac t , Sufficient conditions are found so that a family of smooth Hamiltonian flows limits to a billiard flow as a parameter e --~ 0. This limit is proved to be C 1 near non-singular orbits and C o near orbits tangent to the billiard boundary. These results are used to prove that scattering (thus ergodic) billiards with tangent periodic orbits or tangent homoclinic orbits produce nearby ...
متن کاملOn Smooth Hamiltonian Flows Limiting to Ergodic Billiards
Suucient conditions are found so that a family of smooth Hamiltonian ows limits to a billiard ow as a parameter ! 0. This limit is proved to be C 1 near non-singular orbits and C 0 near orbits tangent to the billiard boundary. These results are used to prove that scattering (thus ergodic) billiards with tangent periodic orbits or tangent homoclinic orbits produce nearby Hamiltonian ows with ell...
متن کامل